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Abstract. Dual transformations in two-dimensional classical and quantum mechanical systems
have been widely studied using conformal mapping techniques but one-dimensional systems have
been largely ignored. In this paper we study dual transformations in one-dimensional mechanical
systems, both classical and quantum mechanical, using some previously developed methods. A
number of examples, mostly involving periodic motion or bound states, are presented. Dual
transformations provide interesting connections between hitherto unconnected problems.

1. Introduction

Recently there has been some interest in dual transformations in one-particle classical and
guantum mechanical systems [1-9]. Most investigations have been based on conformal
mapping techniques useful in two-dimensional systems. One-dimensional systems have
been largely ignored, except for certain radial equations occurring in higher-dimensional
central force problems. In this paper we show that dual transformations can be applied in a
wide variety of one-dimensional classical and quantum mechanical, one-particle systems and
present a number of examples. Dual transformations provide some interesting connections
between previously unconnected problems.

In the classical case we consider a particle of unit mass described by the space and
time variables X, ) and a dual particle of unit mass described by variabje§’J. These
dynamical systems are connected by space and time transformations previously developed

[1]

T 2
(x,1) > (,T) y=fkx) ?j—t = <gx—y) . (1)
The method is applicable when the potential energy of the first particle can be written
as
vy = (L (Y @)
VM) T
The dual potential is (see later)
dr ) dx
U=—nl—) +v|—)- ()
dy dy
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In these equations, v and u are constants. In the potentials we have included terms
linear in the derivatives. Such terms have not been previously constdefé@ energies
of the particles arg. and —A, respectively, so that the energy equations can be written as

1 /dr\? dy\> dy
5(5) “(a) T M )
1 /dy)? de)\?  dx
E(E) ﬂ*(@) ey = ©)

For such dual systems the energy and the coupling congtamtd A exchange roles
and signs. To show the duality of these systems we have
dc dedy dxdydrr dydy 6
d  dydr dydT dr  dT dx ©
and when this is substituted in (4) we obtain (5). The relation between the timed 7’
for the two particles can be determined from the last equation in (1), once the motion of
one of the particles is known. It is interesting to note that time proceeds differently for the
dual particles.
Alternatively [1] we can consider the action integgl= [ L dr with a Langrangian
with a constant term added:

1 /dx)? dy\> dy

The above transformations preserve the action

S:/Ldt:/idT i(jx—y>2=L. (8)

In section 2 we study some examples defined by their transformatien f(x)i.

Once this transformation is given the form of the potentials (2) and (3) is determined.
Alternatively, given the potentidV (x), the transformation can be found by integrating (2).
Some previous results have been included, namely radial equations derived from higher-
dimensional central force problems.

In the quantum mechanical case we consider a particle and its dual described by the time-
independent Scbdinger equation. The potentials for the two particles are of the form (2)
and (3), respectively. Owing to the transformation properties of the one-dimensional
Laplacian it is necessary to include a term in the 8dmger equation proportional to
{y, x}, the Schwarzian derivative of with respect tax

1
{y,x} = %(y”/y’) - E(y”/y/)2 ©)
where a prime indicates differentiation with respectrto Such expressions occur in the
conformal mapping of circular triangles [10], the theory of second-order linear differential
equations [11] and higher WKB approximations. Then settingm = 1 the dual quantum
systems are

1 o dy\> d
1 o 1 de\®>  dx
[~2ae - (Go)enw(§) gl -

1 It is possible to include linear derivativesw’(z) + o*w’(z)* — az/(w)* + «*7/(w) in the conformal two-
dimensional treatment [1].
i A third proof can be based on the Hamilton—Jacobi equation.
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w and —x are again the energies of the two particles anahda are constants{x, y} is
the Schwarzian derivative of with respect toy and it is useful to note that

fe, v = =y x}/y2 (12)
The wavefunctiongs andg are related by
e \ Y2
v=(5) (13
y

It is, of course, necessary to include boundary conditions in the solutions of (10) and
(11) and to examine how these boundary conditions transform under the transformation
y = f(x). In section 3 we consider some examples and again it is useful to denote them
by the transformatiory = f(x). The examples are mostly concerned with bound states.

2. Dual one-dimensional dynamical systems

In this section we consider some examples of dual one-dimensional classical dynamical
systems where the energy of the systems are given by (3) and (4). They are conveniently
denoted by their transformatiopn = f(x){. They have been chosen to have periodic
solutions if possible and in such casgé&) is given by an odd function. For most examples

v = 0. Phases are chosen for convenience.

2.1.y =sinhx, —c0 < x,y < 0

A particle of unit mass moves in a particul&f(x) = Acostfx. The dual potential is
U(y) = —u/(1+ y?), the negative of a ‘witch’ representing a well where a particle can be
trapped if its energy-A is negative.

The solution for thex particle is given in terms of Jacobian elliptic functions. Let
2\ = w?, 2u = w?cost a, k = tanha, wherew is the small-amplitude oscillation frequency
anda is the amplitude. Then

k' sinhx(¢) = kcn (C;:—/t k) (14)
wherek’? = 1 — k?. The solution of the dual system in given parametrically by

K'y(T) = k cos¢ KwT = E(¢, k) (15)
or

kK'y(T) =kcnu KoT = E@) = / dn? u du (16)

where E(¢, k) is an elliptic integral of the second kind ari{u) is the Jacobi extension.
The relation between the timreand T in the two problems is given by
t
KoT = E <%) . 17)
A similar energy equation occurs in the following problem: a unit mass moves on
frictionless wire shaped like a parabala= %yz suspended in a gravitational field.

t To avoid equations likey = af(x/b), whena and b have the dimensions of length, all equations are in
dimensionless form except for the time. Since the differential coeffici€ritidappears it is unnecessary for the
time to be dimensionless.
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2.2.y=gdx orsiny = tanhx, —co <x < o0, —/2 <y <m/2

The Gudermannian anglg dx is associated with the right-angled triangle with legs
(1, sinhx) and hypotenuse (cosf). The potentialV (x) = A»secx. We choose. and

w negative, 2 = —w?, 2u = —w?secl a, where again is the small oscillation frequency
anda the amplitude. The solution is given in terms of elementary functions.

sinhx (¢) = sinha sin(wt sechy). (18)

The frequency decreases with increasing amplitude.
The potential of the dual system is

2
dy

and the particle is confined in an infinite potential well. ket= p coshe anda = gda.
The solution is straightforward with frequency increasing with increasing amplitude.

siny(T) = sina sin(pT secw). (29)

The time equation is found by eliminatingz) and y(7) from sinhx = tany

, k' sinoT ;
sinpr = ——127 A@T) = V1 — k?sirf oT (20)

A(wT)

wherek = sing, k2 =1 — k2.

23.y=sin(x/2), 7w <x<n,-1<y<1

This yields an unexpected result. The potentiat) = (1/4) cos(x/2) differs by a constant
from that of a pendulum of unit length and mass. The constaatchosen to be negative
L = —8w?, the variablex is the angle in radians of the swing measured counterclockwise
from its lowest point and the potential energy is measured from its highest point. If the
maximum angle reached by the particlexis= @ with |a| < = then only finite oscillations,
not librations, occur angk = —2w? coS(a/2).

The solution is again given in terms of elliptic functions with modutus: sin(«/2):

sin3x(t) = ksn(ot, a). (21)

The potential of the dual system is

dx 2
—u (@) =—du/1—-y)=-2u(@+y T+ A-»H.

A particle is trapped between two repulsive Newtonian forces and oscillates between
them. The solution is given parametrically byu(2= —p?/4)

{ y(T) = ksing or { W(T) = kshu 22)

pT =K' E(¢.k) pT =K' Eu).

The time equation i9T = k'E(wt) with k2 =1 —k?, p = 8wk'.
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24.y = %x|x|, —00 < X,y <00

This unusual transformation is both continuous and has a continuous derivatike € |x|.

The potential is that of a simple harmonic oscillator and we choase @2 and 24 = (wa)?

so thatw is the oscillation frequency andthe amplitude. The solution is(¢) = a Sinwt.

The dual potential can be determined fron? = 2|y|. With » and . positive for the simple
harmonic oscillator, the potential and total energy are negative in the dual case. The dual
potential in—u/2|y| which is Newtonian with an attractive inverse square form directed
towards the origin. The oscillating particle passes through the singularity at the origin twice
each period. The solution and time equation are

2y(T) = a®| sing| sing 4T = a?(2¢ — sin 2p) = a?(2wt — sin 2wr). (23)

The y(T) curve in each half cycle is a cycloid.

25.R=r%2a=n+3,0< R, r <o

This case includes all the two-dimensional central force problems, where the force is a
power of the radius. I replaces-26 in the energy equation we obtain

1/dr\* &2 dR\?

5 <E) + 572 + A <d_r> =LU. (24)
The transformatior® = r*, d7'/dr = (dR/dr)? results in

1/drR\* H? dr \?

(= - _ — ) == 2

2 (dT) * o2 ”(dR) * (25)

with » = R?, 28 = N +3, H? = h?/a? and the relatior(n + 3)(N + 3) = 4. This situation
has been studied extensively in the literature [1, 2] and we will not discuss it further except
for two cases.

2.6. The radial energy equation for the Newtonian potenti&l /r is

1/dr\* 1hr2 K
2(dt> +2r2 ;- (26)

The presence of the two terms proportional t0? and r—! suggests treating
this as in equation (4) by letting yddr = r~1, (dy/dr)> = r~2. Thus the
Kepler problem has two duals determined W = r%? as in equation (24) and
y=logr(0<r < oo, —00 <y < oc0). We consider the second case. Reducing (26) to
dimensionless form by letting = br’, whereb is the semi-minor axis of the elliptic orbit,
results in (we omit the prime)

dr\* K2 (b N 2,
bl S = — 27
(dt) T <r a) b5 @n
wherea is the semi-major axis an@i> = a® — b? is the focus length. The transformations
y = logr, dT/dt = (dy/dr)? changes this into

dy\> #? h?
(%) +o5be —a = 52 (28)
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The potential in this case consists of two exponentials and has the form of the Morse
potential [13]. The integration can be performed by using a trick ascribed to Abel. Since
equation (28) is a sum of squares we let

h
3—;=b—£sinu be —a=—fcosu (29)
and using @ = f sinu/(a — f cosu) du we have
dy b® du
T = — = "),
d dy/ <dT> h (a— f cosu) (30)

This can be integrated directly giving

be” =a+ fcoshT/b?). (31)

3. Quantum mechanics

In this section we consider some dual one-particle quantum mechanical systems with the
same forms (2) and (3) for the potential as in the classical system. Then the duadiSger
equations are given by (10) and (11). It is again useful to denote these examples by the
transformationy = f(x) and these examples are mostly concerned with bound states.

3.1. Harmonic oscillatory = 3x|x|, —0o < x, y < 00

We choose:r = v = 0, 2. = w? and (10) becomes the harmonic oscillator with eigenvalues
a = (n+ 3w, n=0,1,2,.... The dual problem (11) has, y} = 3/8y? and is

1 d? 3 7
S N o (7 | 32
[ 2dy2 322 2|y|} Y Y (32)

which is not the one-dimensional Coulomb problem. Setting= (2/u)u we get the
equation

1 3 1 41
e T D 33
[ 202 322 |u|]‘” A (33)

The bound-state eigenvalues of this problemegre- 2/(n + %)2 and the eigenfunctions
follow from those of the harmonic oscillator via (13).

An alternative procedure in this case is to use the mappiﬁg%xz, O<y<oo. The
same dual equation (33) results butan now be interpreted as a radial variable and the
transformationy = 2r/u in (32) gives

1 3 1 a4\
[‘é@‘@‘;}”—‘—ﬂ" (34)

We compare this with the radial Coulomb problem dndimensions with angular
momentum¢

(35)

2dr2 8r2 r

wherek = 2¢ + d and —e is the eigenvalue. Equations (34) and (35) match only when
k =5/2, 3/2 corresponding to special values @f2d. The eigenvalues akg = 2/(n+%)2.

2 — —
[1d (k—1D(k -3 li|R=_€R
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3.2. Coulomb probleny = 2x//|x|; —oo < x, y < oo and y has a continuous derivative

In (10) we choosax = v = 0, A = —1 and it becomes the one-dimensional Coulomb
problem with eigenvalueg, = —1/2(n + 1), n =0,1....
The dual problem (11) is

[ 1 d? 3 uo,
- 4L - 7 = 36
i 2dy2+8y2 4y}</) @ (36)
which is not the harmonic oscillator (noteis negative).

The transformationy = (2/|u|)¥*u reduces this to

[ 1d® 3 1, 2 \?
i taeta|e=(5) o= (37)
which has eigenvalues, = 2(n + 1).

An alternate procedure is to use the mapping: 2/|x], 0 < y < oo so thaty is a
radial variable and putting = (20?/|1|)Y*r equation (36) becomes

1 3 1,, 2 \?
o 4= 4= == ) 38

[ 2dr2+8r2+2wr] (|,u|> e (38)
This is a special case of the radial equation for the harmonic oscillatddimensions

with angular momentund andk = 2¢ + d = 4, 0. This dual has been discussed by Grant
and Rosner [2].

33.R=r%20=n+3

We regardx in (10) as a radial variable and choose a central force proportionalrto
The radial equation i@ dimensions with angular momentuéns

_}d_z (k =Dk —3) n
2dr? 8r2

and corresponds to the mappiRg= (2/(n+ 3))r*+3/2 when we replace by R. It should
be noted that the Schwarzian derivative of any power law is proportional“and can be
interpreted as a centrifugal term. In (10) we choase*Y%=3 /(2 + 6n + 5) to obtain
(39).

The dual problem is also a radial equation with a central foRE with
(N + 3)(n + 3) = 4. This same relation arises in two-dimensional central force problems.
The dual equation is

1 K -1k —3) 2R V!
[‘5@* 8k ‘“<N+3> ]“":‘“" (40)

wherek’ = (N + 3)/2)(k — 2) + 2.
In the case of the Coulomb problem, as in the classical case in section 2.6, we can
proceed differently. We write (39) in the form

1d2 G(-Dk-3 1
[‘5@*7‘;}”—‘“” (1)
with eigenvalues:, = 1/(2(n + (d — 3)/2)?). We choose the mapping = logr, —co <
y < 00, in (10) witha = 0, A = 3(k — 1)(k — 3), v = —1, u = —e. The Schwarzian
derivative of an exponential is a constant and the dual problem to (41) is

w1] y— (39)

1 , 1
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This becomes the Morse potential (10) if we set % and regardk — 2)2/8 as the
eigenvalue.

3.4.tany = sinhx, —c0o < x <00, — /2 <y < 7/2
We now take (10) in the form
[ 1d A

2dx?2  cosifx

which is soluble [12] with eigenvaluesu§ = [v1+8k — (2n + 1], n = 0,1.... The
dual is easily obtained and is

d2
bl

which corresponds to a particle in an infinite potential well. For giuethe eigenvalues
are 8. = [Bu+ 2n + 1D]? - 1.

] V= —uy (43)

3.5. WKB approximation

We now consider the semiclassical approximation to the wavefunctipnand ¢ in
equations (10) and (11). In this approximatign= €5/* and § is expanded in powers
of i, SZSQ-I—ESl-FEzSQ-F'“.

The Schwarzian derivatives are of ordérand then only contribute t8,, so will be
omitted. Then (we put = 0)

1 .

Ywks = RUA exp[%f dx Rl/z} (45)
1 .

OwWKB = 0174 exp[}l_l/ dy Ql/z] (46)

where

Aeo®)) o)

These wavefunctions are related by the transformatien f (x) and the relation (13).
In the semiclassical approximation the one-dimensional harmonic oscillator and Coulomb
problems are dual.

4. Conclusion

Dual transformations in mechanical systems are a rich and interesting subject in one

dimension as well as two dimensions. In classical systems the form of the equations

of motion are invariant under appropriate space and time transformations which leads to a
duality between different problems. In the quantum mechanical case the time-independent
Schibdinger equation preserves its form under appropriate space transformations and leads
to a similar duality.

We are grateful to the Physics Department, Harvard University for hospitality while this
work was completed.
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