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Abstract. Dual transformations in two-dimensional classical and quantum mechanical systems
have been widely studied using conformal mapping techniques but one-dimensional systems have
been largely ignored. In this paper we study dual transformations in one-dimensional mechanical
systems, both classical and quantum mechanical, using some previously developed methods. A
number of examples, mostly involving periodic motion or bound states, are presented. Dual
transformations provide interesting connections between hitherto unconnected problems.

1. Introduction

Recently there has been some interest in dual transformations in one-particle classical and
quantum mechanical systems [1–9]. Most investigations have been based on conformal
mapping techniques useful in two-dimensional systems. One-dimensional systems have
been largely ignored, except for certain radial equations occurring in higher-dimensional
central force problems. In this paper we show that dual transformations can be applied in a
wide variety of one-dimensional classical and quantum mechanical, one-particle systems and
present a number of examples. Dual transformations provide some interesting connections
between previously unconnected problems.

In the classical case we consider a particle of unit mass described by the space and
time variables (x, t) and a dual particle of unit mass described by variables (y, T ). These
dynamical systems are connected by space and time transformations previously developed
[1]

(x, t)→ (y, T ) y = f (x) dT

dt
=
(

dy

dx

)2

. (1)

The method is applicable when the potential energy of the first particle can be written
as

V (x) = λ
(

dy

dx

)2

+ ν
(

dy

dx

)
(2)

The dual potential is (see later)

U(y) = −µ
(

dx

dy

)2

+ ν
(

dx

dy

)
. (3)
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In these equationsλ, ν andµ are constants. In the potentials we have included terms
linear in the derivatives. Such terms have not been previously considered†. The energies
of the particles areµ and−λ, respectively, so that the energy equations can be written as

1

2

(
dx

dt

)2

+ λ
(

dy

dx

)2

+ ν dy

dx
= µ (4)

1

2

(
dy

dT

)2

− µ
(

dx

dy

)2

+ ν dx

dy
= −λ. (5)

For such dual systems the energy and the coupling constantµ and λ exchange roles
and signs. To show the duality of these systems we have

dx

dt
= dx

dy

dy

dt
= dx

dy

dy

dT

dT

dt
= dy

dT

dy

dx
(6)

and when this is substituted in (4) we obtain (5). The relation between the timest andT
for the two particles can be determined from the last equation in (1), once the motion of
one of the particles is known. It is interesting to note that time proceeds differently for the
dual particles.

Alternatively [1] we can consider the action integralS = ∫
L dt with a Langrangian

with a constant term added:

L = 1

2

(
dx

dt

)2

− λ
(

dy

dx

)2

− ν dy

dx
+ µ. (7)

The above transformations preserve the action

S =
∫
L dt =

∫
L̂ dT L̂

(
dy

dx

)2

= L. (8)

In section 2 we study some examples defined by their transformationy = f (x)‡.
Once this transformation is given the form of the potentials (2) and (3) is determined.
Alternatively, given the potentialV (x), the transformation can be found by integrating (2).
Some previous results have been included, namely radial equations derived from higher-
dimensional central force problems.

In the quantum mechanical case we consider a particle and its dual described by the time-
independent Schrödinger equation. The potentials for the two particles are of the form (2)
and (3), respectively. Owing to the transformation properties of the one-dimensional
Laplacian it is necessary to include a term in the Schrödinger equation proportional to
{y, x}, the Schwarzian derivative ofy with respect tox

{y, x} = d

dx
(y ′′/y ′)− 1

2
(y ′′/y ′)2 (9)

where a prime indicates differentiation with respect tox. Such expressions occur in the
conformal mapping of circular triangles [10], the theory of second-order linear differential
equations [11] and higher WKB approximations. Then setting ¯h = m = 1 the dual quantum
systems are [

− 1

2

d2

dx2
− a{y, x} + λ

(
dy

dx

)2

+ ν dy

dx

]
ψ = µψ (10)[

− 1

2

d2

dy2
−
(

1

4
− a

)
{x, y} − µ

(
dx

dy

)2

+ ν dx

dy

]
ϕ = −λϕ. (11)

† It is possible to include linear derivativesαw′(z) + α∗w′(z)∗ → αz′(w)∗ + α∗z′(w) in the conformal two-
dimensional treatment [1].
‡ A third proof can be based on the Hamilton–Jacobi equation.
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µ and−λ are again the energies of the two particles andν anda are constants.{x, y} is
the Schwarzian derivative ofx with respect toy and it is useful to note that

{x, y} = −{y, x}/y ′2. (12)

The wavefunctionsψ andϕ are related by

ψ =
(

dx

dy

)1/2

ϕ. (13)

It is, of course, necessary to include boundary conditions in the solutions of (10) and
(11) and to examine how these boundary conditions transform under the transformation
y = f (x). In section 3 we consider some examples and again it is useful to denote them
by the transformationy = f (x). The examples are mostly concerned with bound states.

2. Dual one-dimensional dynamical systems

In this section we consider some examples of dual one-dimensional classical dynamical
systems where the energy of the systems are given by (3) and (4). They are conveniently
denoted by their transformationy = f (x)†. They have been chosen to have periodic
solutions if possible and in such casesf (x) is given by an odd function. For most examples
ν = 0. Phases are chosen for convenience.

2.1. y = sinhx,−∞ < x, y <∞
A particle of unit mass moves in a particularV (x) = λ cosh2 x. The dual potential is
U(y) = −µ/(1+ y2), the negative of a ‘witch’ representing a well where a particle can be
trapped if its energy−λ is negative.

The solution for thex particle is given in terms of Jacobian elliptic functions. Let
2λ = ω2, 2µ = ω2 cosh2 a, k = tanha, whereω is the small-amplitude oscillation frequency
anda is the amplitude. Then

k′ sinhx(t) = k cn

(
ωt

k′
, k

)
(14)

wherek′2 = 1− k2. The solution of the dual system in given parametrically by

k′y(T ) = k cosφ k′ωT = E(φ, k) (15)

or

k′y(T ) = k cnu k′ωT = E(u) =
∫ u

o

dn2 u du (16)

whereE(φ, k) is an elliptic integral of the second kind andE(u) is the Jacobi extension.
The relation between the timet andT in the two problems is given by

k′ωT = E
(
ωt

k′

)
. (17)

A similar energy equation occurs in the following problem: a unit mass moves on
frictionless wire shaped like a parabolaz = 1

2y
2 suspended in a gravitational field.

† To avoid equations likey = af (x/b), when a and b have the dimensions of length, all equations are in
dimensionless form except for the time. Since the differential coefficient dT/dt appears it is unnecessary for the
time to be dimensionless.
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2.2. y = g dx or siny = tanhx, −∞ < x <∞, −π/2< y < π/2

The Gudermannian angleg dx is associated with the right-angled triangle with legs
(1, sinhx) and hypotenuse (coshx). The potentialV (x) = λ sech2 x. We chooseλ and
µ negative, 2λ = −ω2, 2µ = −ω2 sech2 a, where againω is the small oscillation frequency
anda the amplitude. The solution is given in terms of elementary functions.

sinhx(t) = sinha sin(ωt secha). (18)

The frequency decreases with increasing amplitude.
The potential of the dual system is

−µ
(

dx

dy

)2

= −µ sec2 y

and the particle is confined in an infinite potential well. Letω = p cosha andα = g da.
The solution is straightforward with frequency increasing with increasing amplitude.

siny(T ) = sinα sin(pT secα). (19)

The time equation is found by eliminatingx(t) andy(T ) from sinhx = tany

sinpt = k′ sinωT

1(ωT )
1(ωT ) =

√
l − k2 sin2ωT (20)

wherek = sinα, k′2 = 1− k2.

2.3. y = sin(x/2), −π 6 x 6 π , −16 y 6 1

This yields an unexpected result. The potentialV (x) = (λ/4) cos2(x/2) differs by a constant
from that of a pendulum of unit length and mass. The constantλ is chosen to be negative
λ = −8ω2, the variablex is the angle in radians of the swing measured counterclockwise
from its lowest point and the potential energy is measured from its highest point. If the
maximum angle reached by the particle isx = α with |α| < π then only finite oscillations,
not librations, occur andµ = −2ω2 cos2(α/2).

The solution is again given in terms of elliptic functions with modulusk = sin(α/2):

sin 1
2x(t) = k sn(ωt, α). (21)

The potential of the dual system is

−µ
(

dx

dy

)2

= −4µ/(1− y2) = −2µ((1+ y)−1+ (1− y)−1).

A particle is trapped between two repulsive Newtonian forces and oscillates between
them. The solution is given parametrically by (2µ = −p2/4){

y(T ) = k sinφ

pT = k′E(φ, k) or

{
y(T ) = k snu

pT = k′E(u). (22)

The time equation ispT = k′E(ωt) with k′2 = 1− k2, p = 8ωk′.
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2.4. y = 1
2x|x|, −∞ < x, y <∞

This unusual transformation is both continuous and has a continuous derivative dy/dx = |x|.
The potential is that of a simple harmonic oscillator and we choose 2λ = ω2 and 2µ = (ωa)2
so thatω is the oscillation frequency anda the amplitude. The solution isx(t) = a sinωt .
The dual potential can be determined from|x|2 = 2|y|. With λ andµ positive for the simple
harmonic oscillator, the potential and total energy are negative in the dual case. The dual
potential in−µ/2|y| which is Newtonian with an attractive inverse square form directed
towards the origin. The oscillating particle passes through the singularity at the origin twice
each period. The solution and time equation are

2y(T ) = a2| sinφ| sinφ 4ωT = a2(2φ − sin 2φ) = a2(2ωt − sin 2ωt). (23)

The y(T ) curve in each half cycle is a cycloid.

2.5. R = rα, 2α = n+ 3, 06 R, r <∞
This case includes all the two-dimensional central force problems, where the force is a
power of the radius. Ifh replacesr2θ̇ in the energy equation we obtain

1

2

(
dr

dt

)2

+ h2

2r2
+ λ

(
dR

dr

)2

= µ. (24)

The transformationR = rα, dT/dt = (dR/dr)2 results in

1

2

(
dR

dT

)2

+ H 2

2R2
− µ

(
dr

dR

)2

= −λ (25)

with r = Rβ , 2β = N +3,H 2 = h2/α2 and the relation(n+3)(N +3) = 4. This situation
has been studied extensively in the literature [1, 2] and we will not discuss it further except
for two cases.

2.6. The radial energy equation for the Newtonian potential−K/r is

1

2

(
dr

dt

)2

+ 1

2

h2

r2
− K
r
= µ. (26)

The presence of the two terms proportional tor−2 and r−1 suggests treating
this as in equation (4) by letting dy/dr = r−1, (dy/dr)2 = r−2. Thus the
Kepler problem has two duals determined byR = r1/2 as in equation (24) and
y = logr(0< r <∞,−∞ < y <∞). We consider the second case. Reducing (26) to
dimensionless form by lettingr = br ′, whereb is the semi-minor axis of the elliptic orbit,
results in (we omit the prime)(

dr

dt

)2

+ h
2

b6

(
b

r
− a

)2

= h2

b6
f 2 (27)

wherea is the semi-major axis andf 2 = a2 − b2 is the focus length. The transformations
y = logr, dT/dt = (dy/dr)2 changes this into(

dy

dT

)2

+ h
2

b6
(b ey − a)2 = h2

b6
f 2. (28)
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The potential in this case consists of two exponentials and has the form of the Morse
potential [13]. The integration can be performed by using a trick ascribed to Abel. Since
equation (28) is a sum of squares we let

dy

dT
= hf

b3
sinu b ey − a = −f cosu (29)

and using dy = f sinu/(a − f cosu) du we have

dT = dy

/(
dy

dT

)
= b3

h

du

(a − f cosu)
. (30)

This can be integrated directly giving

b e−y = a + f cos(hT /b2). (31)

3. Quantum mechanics

In this section we consider some dual one-particle quantum mechanical systems with the
same forms (2) and (3) for the potential as in the classical system. Then the dual Schrödinger
equations are given by (10) and (11). It is again useful to denote these examples by the
transformationy = f (x) and these examples are mostly concerned with bound states.

3.1. Harmonic oscillatory = 1
2x|x|, −∞ < x, y <∞

We choosea = ν = 0, 2λ = ω2 and (10) becomes the harmonic oscillator with eigenvalues
µn = (n+ 1

2)ω, n = 0, 1, 2, . . . . The dual problem (11) has{x, y} = 3/8y2 and is[
−1

2

d2

dy2
− 3

32y2
− µ

2|y|
]
ϕ = −λϕ (32)

which is not the one-dimensional Coulomb problem. Settingy = (2/µ)u we get the
equation [

−1

2

d2

du2
− 3

32u2
− 1

|u|
]
ϕ = −4λ

µ2
ϕ = −εϕ. (33)

The bound-state eigenvalues of this problem areεn = 2/(n+ 1
2)

2 and the eigenfunctions
follow from those of the harmonic oscillator via (13).

An alternative procedure in this case is to use the mappingy = 1
2x

2, 0< y <∞. The
same dual equation (33) results buty can now be interpreted as a radial variable and the
transformationy = 2r/µ in (32) gives[

−1

2

d2

dr2
− 3

32r2
− 1

r

]
ϕ = −4λ

µ2
ϕ. (34)

We compare this with the radial Coulomb problem ind dimensions with angular
momentum` [

−1

2

d2

dr2
+ (k − 1)(k − 3)

8r2
− 1

r

]
R = −εR (35)

wherek = 2` + d and−ε is the eigenvalue. Equations (34) and (35) match only when
k = 5/2, 3/2 corresponding to special values of 2`+d. The eigenvalues areεn = 2/(n+ 1

2)
2.
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3.2. Coulomb problemy = 2x/
√|x|; −∞ < x, y <∞ and y has a continuous derivative

In (10) we choosea = ν = 0, λ = −1 and it becomes the one-dimensional Coulomb
problem with eigenvaluesµn = −1/2(n+ 1)2, n = 0, 1 . . . .

The dual problem (11) is[
−1

2

d2

dy2
+ 3

8y2
− µ

4
y2

]
ϕ = ϕ (36)

which is not the harmonic oscillator (noteµ is negative).
The transformationy = (2/|µ|)1/4u reduces this to[

−1

2

d2

du2
+ 3

8u2
+ 1

2
u2

]
ϕ =

(
2

|µ|
)1/2

ϕ = εϕ (37)

which has eigenvaluesεn = 2(n+ 1).
An alternate procedure is to use the mappingy = 2

√|x|, 0 < y < ∞ so thaty is a
radial variable and puttingy = (2ω2/|µ|)1/4r equation (36) becomes[

−1

2

d2

dr2
+ 3

8r2
+ 1

2
ω2r2

]
ϕ =

(
2

|µ|
)1/2

ωϕ. (38)

This is a special case of the radial equation for the harmonic oscillator ind dimensions
with angular momentum̀ andk = 2`+ d = 4, 0. This dual has been discussed by Grant
and Rosner [2].

3.3. R = rα, 2α = n+ 3

We regardx in (10) as a radial variabler and choose a central force proportional torn.
The radial equation ind dimensions with angular momentum̀is[

−1

2

d2

dr2
+ (k − 1)(k − 3)

8r2
+ λrn+1

]
ψ = µψ (39)

and corresponds to the mappingR = (2/(n+3))r(n+3)/2 when we replacey by R. It should
be noted that the Schwarzian derivative of any power law is proportional tor−2 and can be
interpreted as a centrifugal term. In (10) we choosea =(k−1)(k−3) /(n2 + 6n+ 5) to obtain
(39).

The dual problem is also a radial equation with a central forceRN with
(N + 3)(n+ 3) = 4. This same relation arises in two-dimensional central force problems.
The dual equation is[

− 1

2

d2

dR2
+ (k

′ − 1)(k′ − 3)

8R2
− µ

(
2R

N + 3

)N+1]
ϕ = −λϕ (40)

wherek′ = ((N + 3)/2)(k − 2)+ 2.
In the case of the Coulomb problem, as in the classical case in section 2.6, we can

proceed differently. We write (39) in the form[
−1

2

d2

dr2
+ (k − 1)(k − 3)

8r2
− 1

r

]
ϕ = −εϕ (41)

with eigenvaluesεn = 1/(2(n + (d − 3)/2)2). We choose the mappingy = logr,−∞ <

y < ∞, in (10) with a = 0, λ = 1
8(k − 1)(k − 3), ν = −1, µ = −ε. The Schwarzian

derivative of an exponential is a constant and the dual problem to (41) is[
−1

2

d2

dy2
+ (ε e2y − ey)

]
ϕ = −1

8
(k − 2)2ϕ. (42)
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This becomes the Morse potential (10) if we setε = 1
2 and regard(k − 2)2/8 as the

eigenvalue.

3.4. tany = sinhx, −∞ < x <∞, −π/2< y < π/2

We now take (10) in the form[
−1

2

d2

dx2
− λ

cosh2 x

]
ψ = −µψ (43)

which is soluble [12] with eigenvalues 8µn = [
√

1+ 8λ − (2n + 1)]2, n = 0, 1 . . . . The
dual is easily obtained and is[

−1

2

d2

dy2
+
(
µ− 1

8

)
tan2 y

]
ϕ =

(
λ− µ− 1

4

)
ϕ (44)

which corresponds to a particle in an infinite potential well. For givenµ the eigenvalues
are 8λ = [

√
8µ+ (2n+ 1)]2− 1.

3.5. WKB approximation

We now consider the semiclassical approximation to the wavefunctionsψ and ϕ in
equations (10) and (11). In this approximationψ = eiS/h̄ and S is expanded in powers
of h̄, S = S0+ h̄S1+ h̄2S2+ · · · .

The Schwarzian derivatives are of order ¯h2 and then only contribute toS2, so will be
omitted. Then (we putν = 0)

ψWKB = 1

R1/4
exp

[
i

h̄

∫
dx R1/2

]
(45)

ϕWKB = 1

Q1/4
exp

[
i

h̄

∫
dy Q1/2

]
(46)

where

R = 2

(
µ− λ

(
dy

dx

)2)
Q = 2

(
µ

(
dx

dy

)2

− λ
)
. (47)

These wavefunctions are related by the transformationy = f (x) and the relation (13).
In the semiclassical approximation the one-dimensional harmonic oscillator and Coulomb
problems are dual.

4. Conclusion

Dual transformations in mechanical systems are a rich and interesting subject in one
dimension as well as two dimensions. In classical systems the form of the equations
of motion are invariant under appropriate space and time transformations which leads to a
duality between different problems. In the quantum mechanical case the time-independent
Schr̈odinger equation preserves its form under appropriate space transformations and leads
to a similar duality.

We are grateful to the Physics Department, Harvard University for hospitality while this
work was completed.
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